GOES-R Operations Summary

Eric Chipman, OSO

November 18, 2003

Operations Activities Based on GOES-N Plans

- Schedule Generation
- Daily Schedule Uploads, Operations
- Periodic Activities, Special Procedures
- Spacecraft Monitoring
- Other Ground System Elements
- Contingencies
- Distributed Architecture

Schedule Generation

- Daily schedules generated 2-4 weeks in advance, contain
 - Frame schedule
 - Star observation information
 - Housekeeping commands
 - Weekly calibrations
 - Special activities (maneuvers, thruster flush, etc)
 - Ground Commands for uploads of next day's schedule
- Stored command uploads, plus ground schedules
- May require 2 or 3 stored schedules per day, choose in real time
- Typically 2 housekeeping periods (10 minutes) per day
 - Momentum management, EW orbit adjustment, clock adjust
- Automated schedule generation, many days at a time

Schedule Generation – IMC Sets

- Image Navigation and Registration (INR)
 - Mostly computed in realtime on the ground
 - IMC for mirror motion adjustment to maintain INR within range of ground resampling algorithm
 - IMC data computed a end of each day for next day
 - IMC data to be uploaded at time of schedule uploads
 - Possible IMC updates during day
- INR calculations to include Dynamic Motion sensing, geometric correction for large sensor array

Daily Schedule Uploads, Operations

- Daily schedules to be uploaded at least 2 hours prior to use
 - 2–3 schedules per day
 - Frame tables may be adjusted
 - Star tables may be adjusted
- Table uploads to be automatic, via ground schedules
 - Uploads
 - Special activities (maneuvers, thruster flush, etc)
- Stored command execution to continue without commanding
 - May wish to switch to a different schedule in real time

Periodic Activities

- Typical daily schedules are identical from day to day, except:
 - Star observations will change
 - Housekeeping EW unloads may change
 - Weekly SEM/SXI calibrations will be included
 - Eclipse/KOZ may require frame adjustments
- Maneuvers will be done by uploaded schedules
 - North-South maneuvers (1 per year)
 - Yaw Flip maneuvers (2 per year)
 - Some maneuvers may be done manually (RT CPs)
- Special procedures will occur

Special Procedures

- Irregular or unpredictable command activities
 - Attitude System microprocessor uploads
 - Optimized parameters
 - Fixes to problems
 - Battery charge management
 - Comm system management
 - Special TM modes (dwell)
 - Heater management
- Contingency responses

Spacecraft Monitoring

- Full-time monitoring of all spacecraft
 - Limit monitoring in ground system
 - Safety monitors (alarms) cannot be disabled
 - Automatic Fault Protection in some cases
 - On-Line contingency recognition, response assistance
- Contingency Procedures to be developed
- Data trending reviewed by Engineers
- Redundant Ground System hardware always available
 - Need automatic ground system failover in most cases
 - Need ground system config visibility at ops station

Other Ground System Elements

- Operations monitors, operates, performs failovers
- Sensor Processing System (SPS)
 - Image Calibration, Formatting, Resampling
 - High Data Rates for ABI, HES
- Product Monitor
 - ABI, HES Landmarking, product visibility at SOCC
- Orbit and Attitude Planning System
 - Daily maintenance of orbital position, momentum
- Instrument Data Display Systems
 - SIS (SXI), etc
- Ground Station Systems

Contingency Operations

- Automated Fault Protection, with Manual Responses
 - Automated Fault Protection
 - Clearly defined faults
 - Response well understood
 - Operators to be notified
 - Usually require operator follow-up
 - Manual Responses
 - Experience shows that about half of anomalies are not those we prepared for
 - For anomalies not handled by Fault Protection
 - After FP response, may require operator cmds
 - On-line help for manual responses to be provided
- Major anomalies will require Anomaly Review Board to determine way to proceed

GOES-R Distributed Architecture

- Operations with 2 Spacecraft as GOES-EASTA, GOES-EASTB, etc.
 - Address impact to ground ops work
 - Double antennas?
 - Data streams?
 - Double monitors?
 - Schedules equally complex for 1 or 2 instruments
 - Maneuvers for each spacecraft
 - Same engineering team for all maneuvers
- Co-located spacecraft require separate telemetry services
 - May require accurate orbital maneuvers for co-located orbits